

Direct extraction lithium processes: The challenges of spent brine disposal

Tailings & Mine Waste '18

Ignacio Ezama | iezama@srk.com.ar

Camilo de los Hoyos | cdeloshoyos@srk.com.ar

Pablo Cortegoso | pcortegoso@srk.com

Terry Braun | tbraun@srk.com

Outline

- Introduction to brine hosted lithium deposits
- Direct vs conventional extraction processes
- Spent brine disposal management
- Case study example
- Conclusion

Lithium brine deposits

Bradley et al., 2013

Brine mining particularities

- Valuable elements contained in a mobile environment
- Brine flows either naturally or by pumping –
- Brine composition varies space and time –
- Complex hydrodynamics
- Weather: precipitation can affect grade distribution 32 Position (m) 48

Brine resource & reserve estimation

- Specialized hydrogeological knowledge needed
 - Hypersaline solution theories for groundwater dynamics modelling
- Chemical processing knowledge needed
 - Brine processing for high purity lithium carbonate extraction
- Adequate engineering
 - Brine recovery: What part of the resource is economically extractable?
 - Fresh water availability: project demand conditioned by site hyperarid conditions
 - Spent brine handling

Lithium extraction processes

Conventional evaporation process

- Increase concentration of lithium through solar evaporation
 - Large evaporation areas
 - Longer ramp-up periods
 - Dependence on meteorological conditions
- Direct extraction processes
 - Raw brine goes 'straight' to chemical process
 - Reduction on pre-evaporation requirements
 - Shorter period between extraction and final product first
 - Reduced dependence on climate

novative & Low Cost Direct Extraction Process

Spent brine disposal management

- Conventional processes
 - Reduced spent brine volume large volumes evaporated in processing
- Direct extraction processes:
 - Large amounts of spent brine high density and low Li⁺ –
 - Additional fluid source

Disposal strategies:

- Pumping back into basin
- 2. Disposal in evaporation ponds

Disposal of spent brine – Pumping into basin

- Traditional solution used in conventional evaporation process
- Brine returned to original environment
- No overland impact
- For direct extraction processes:
 - Large volumes may affect lithium concentrations
 - Additional fluid sources becomes part of resources model inputs
 - Balance between extraction and disposal wells rates and location – is needed

Disposal of spent brine – Evaporation ponds

- Counter intuitive?
 - Direct extraction process intended to reduce the need for extensive evaporation ponds and use of expensive liners
- A holistic approach
 - Design that balances evaporation, crystallization and seepage to control recycled brine inflow rate and grade
 - Hybrid evaporation pond / salt stack using reject materials

Disposal of spent brine – Evaporation ponds

Advantages	Disadvantages
 Lower risk of diluting lithium concentration Reduction in inflow rate Potential increase in mineral content of spent brine Reduced complexity of production plan design Allows for more robust estimation of resources and reserves 	 Impact on surface – development of salt landforms Cost of land to be commissioned for salt stack Relative to production and climatic conditions Cost of earthworks and disposal pipelines

Disposal design strategy: Case study

Design parameters:

- Lithium production rate: 25ktpa Li₂CO₃
- Average raw brine concentration: 400–700 mg/L
- Production efficiency: ~50%
- Spend brine disposal rate: 1,500–3,000 m³/hr of brine
- Brine evaporation rates in the lithium triangle: 4–8 mm

Evaporation area 500 to 1000 ha

Disposal design strategy: Case study

Critical design aspects

- Disposal area sizing
 - Linked to evaporation capacity of site;
 - Expected spent brine flow
- Tolerance for seepage and infiltration (quality and quantity)
- Brine storage volume kept at minimum
 - Avoid increasing earthworks
 - Maintain low hydraulic head/ seepage

Conclusion

- Lithium mining from highly enriched brines is significantly different to classic hard-rock mining
- Given the nature of this type of projects, brine resource and reserve estimation requires the application of specialised hydrogeological knowledge
- Direct extraction technologies arised as an alternative to the conventional production processes.
- Larger amounts of spent brine are to be managed adequately to avoid potentially affection of the resource.

Conclusion

- Cost-efficient disposal solutions can be achieve, but require a holistic approach in terms their design
- Hybrid evaporation pond / salt stack can be developed balancing evaporation, crystallisation and seepage to keep the recycled brine inflow to the basin at a controlled rate
- There is place for massive scale economy, when the used of localy available materials is considered and the reduction in transport/ construction costs is achieved

Thank you

Ignacio Ezama SRK Argentina

iezama@srk.com.ar

Camilo de los Hoyos SRK Argentina

cdeloshoyos@srk.com.ar

Pablo Cortegoso SRK Denver

pcortegoso@srk.com

Terry Braun SRK Denver

tbraun@srk.com

